Poster 2761

IDWeek 2023, Boston, MA, USA October 11-15, 2023

Contact: Boudewijn L.M. DeJonge Email: boudewijn.dejonge@shionogi.com

Activity of Cefiderocol and Comparator Agents Against Achromobacter and Burkholderia Isolates, Collected During 2020-2022 as Part of the **SENTRY Antimicrobial Surveillance Program**

Boudewijn L.M. DeJonge¹, Sean T. Nguyen¹, Jason J. Bryowsky¹, Chris Longshaw², Joshua M. Maher³, Rodrigo E. Mendes³, Miki Takemura⁴, Yoshinori Yamano⁴ Shionogi Inc., Florham Park, NJ, USA; Shionogi B.V., London, UK; MILaboratories, North Liberty, IA, USA; Shionogi & Co., Ltd., Osaka, Japan

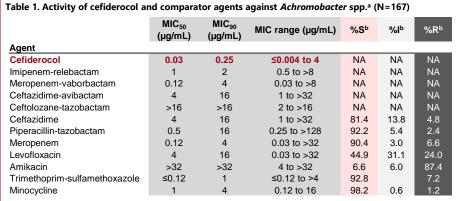
Background

- Achromobacter and Burkholderia species are frequent opportunistic pathogens in individuals with immunodeficiency, most notably cystic fibrosis.
- Cefiderocol is a siderophore-conjugated cephalosporin with broad activity against Gram-negative bacteria.

Objective

To determine the activity of cefiderocol and comparator agents against isolates of Achromobacter and Burkholderia cepacia complex, collected in 2020-2022 in Europe and the USA as part of the SENTRY Antimicrobial Surveillance Program.

Methods

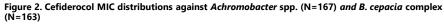

- Minimum inhibitory concentrations (MICs) were determined according to CLSI guidelines against 167 Achromobacter and 163 B. cepacia complex isolates, using broth microdilution with cation-adjusted Mueller-Hinton broth (CAMHB) for comparator agents and iron-depleted CAMHB for cefiderocol. Most isolates were from hospitalized patients with pneumonia (Figure 1).
- Susceptibility was assessed for agents with CLSI breakpoints. For agents without established CLSI breakpoints, only MIC₅₀, MIC₉₀, and MIC ranges are reported.

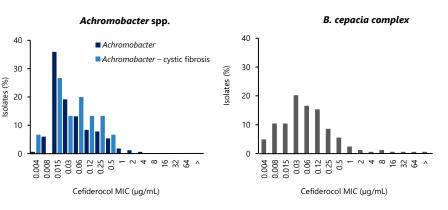
Results

- Cefiderocol was the most potent agent tested against Achromobacter, showing MIC₅₀ and MIC₉₀ values of 0.03 and 0.25 µg/mL, respectively and all isolates were inhibited at ≤4 µg/mL (Table 1, Figure 2).
- Achromobacter isolates from cystic fibrosis patients showed higher MIC₅₀ and MIC₉₀ values for most agents. but for cefiderocol MIC₅₀ and MIC₉₀ values remained low (Table 1 versus Table 2, Figure 2).
- Against B. cepacia complex, cefiderocol was the most potent agent tested, with MIC₅₀ and MIC₉₀ values of 0.06 and 0.5 µg/mL, respectively (Table 3, Figure 2).

Figure 1. Source of Achromobacter spp. and Burkholderia cepacia complex isolates B. cepacia Achromobacter spp. complex by by infection type ■ Pneumonia ■ Pneumonia infection type Bloodstream Bloodstream

I, intermediate; NA, not applicable; MIC, minimum inhibitory concentration; R, resistant; S, susceptible. Achromobacter denitrificans (1), A. insolitus (3), A. marplatensis (1), A. xylosoxidans (30), and unspeciated Achromobacter (132); bCriteria as published by CLSI (2023)


Table 2. Activity of cefiderocol and comparator agents against Achromobacter spp. a from cystic fibrosis patients (N=15)


	MIC ₅₀ (μg/mL)	MIC ₉₀ (µg/mL)	MIC range (μg/mL)	%S⁵	%l⁵	%R ^b
Agent						
Cefiderocol	0.06	0.25	≤0.004 to 0.5	NA	NA	NA
Imipenem-relebactam	1	4	1 to >8	NA	NA	NA
Meropenem-vaborbactam	2	4	0.12 to >8	NA	NA	NA
Ceftazidime-avibactam	8	>32	2 to >32	NA	NA	NA
Ceftolozane-tazobactam	>16	>16	16 to >16	NA	NA	NA
Ceftazidime	8	>32	2 to >32	60.0	20.0	20.0
Piperacillin-tazobactam	2	>128	0.5 to >128	86.7	0.0	13.3
Meropenem	2	32	0.12 to >32	86.7	0.0	13.3
Levofloxacin	4	32	1 to 32	26.7	33.3	40.0
Amikacin	>32	>32	>32 to >32	0.0	0.0	100.0
Trimethoprim-sulfamethoxazole	0.25	1	≤0.12 to 4	93.3		6.7
Minocycline	1	4	0.25 to 16	93.3	0.0	6.7

I, intermediate; MIC, minimum inhibitory concentration; NA, not applicable; R, resistant; S, susceptible. *Achromobacter xylosoxidans (2) and unspeciated Achromobacter (13); bCriteria as published by CLSI (2023).

Table 3. Activity of cefiderocol and comparator agents against Burkholderia cepacia complex (N=163) MIC₅₀ MIC range (µg/mL) %Ra (µg/mL) (µg/mL) Agent Cefiderocol 0.06 0.5 ≤0.004 to >64 NA 2 NA NA Imipenem-relebactam 0.5 0.06 to > 8NA Meropenem-vaborbactam NA NA 0.25 to > 8NA Ceftazidime-avibactam 1 to >32 NA NA NA Ceftolozane-tazobactam >16 NA NA NA 0.5 to > 16Ceftazidime 1 to >32 82.2 6.7 80.4 Meropenem 0.25 to >32 12.3 Levofloxacin 0.5 to > 3255.2 17.8 27.0 88.3 11.7 Trimethoprim-sulfamethoxazole 0.5 ≤0.12 to >4 82.8 9.2 Minocycline 0.25 to >32 8.0

I, intermediate; MIC, minimum inhibitory concentration; NA, not applicable; R, resistant; S, susceptible. Criteria as published by CLSI (2023)

Conclusion

Cefiderocol showed potent in vitro activity against a set of contemporary clinical Achromobacter and B. cepacia complex isolates, suggesting that cefiderocol could be an important treatment option for infections caused by these opportunistic pathogens.