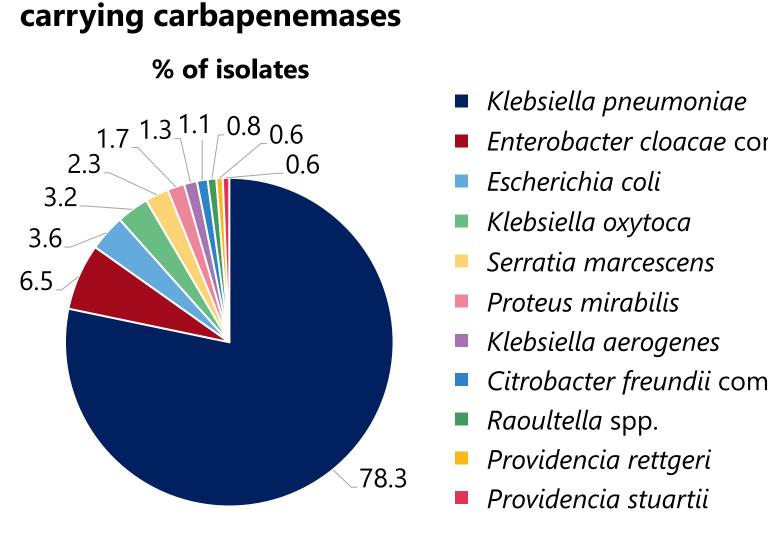
Poster 1472

IDWeek, October 16–19, 2024 Los Angeles, CA, USA

Contact: Boudewijn DeJonge **Email:** boudewijn.dejonge@shionogi.com

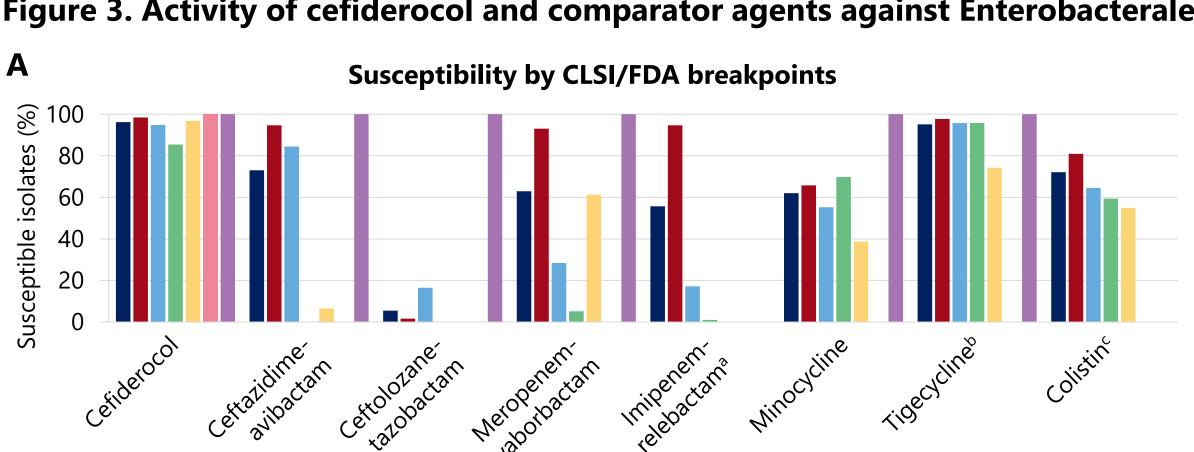
BACKGROUND

- Infections with carbapenem-resistant Enterobacterales are associated with poor outcomes and high mortality, necessitating the use of appropriate antibiotic treatment.
- Cefiderocol is a siderophore conjugated cephalosporin with good stability against all classes of β -lactamases and is approved in the United States for the treatment of adult patients with complicated urinary tract infections and hospital-acquired/ventilator-associated bacterial pneumonia caused by susceptible Gram-negative pathogens and in Europe for the treatment of infections due to aerobic Gram-negative organisms in adults with limited treatment options.
- In this study, the *in vitro* activity of cefiderocol and comparator agents was assessed against carbapenemase-carrying Enterobacterales that were collected during 2020–2022 in Europe and the USA as part of the SENTRY Antimicrobial Surveillance Program.


METHODS

- 24,084 Enterobacterales were collected and 587 (2.4%) that were nonsusceptible to meropenem and/or imipenem by Clinical and Laboratory Standards Institute (CLSI) breakpoints were subjected to whole-genome sequencing to determine their carbapenemase content.
- Minimum inhibitory concentrations (MICs) were determined according to CLSI guidelines using broth microdilution with cation-adjusted Mueller-Hinton broth (CAMHB) for comparator agents, and iron-depleted CAMHB for cefiderocol.
- Susceptibility was assessed according to 2024 CLSI, US Food and Drug Administration (FDA), and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints.

RESULTS


- 474 of 587 meropenem- and/or imipenem-non-susceptible isolates (80.7%) carried carbapenemase genes; the majority of them were *Klebsiella* pneumoniae (**Figure 1**).
- Genes for KPC enzymes were most frequently encountered, followed by OXA-48-like and NDM (**Figure 2**).
- Cefiderocol was highly active against isolates carrying carbapenemase genes (**Figure 3A**), whereas activity of β -lactam- β -lactamase inhibitor combinations depended on the carbapenemase detected (Figure 3A), with the exception of aztreonam-avibactam (Figure 3B).
- When applying EUCAST breakpoints (i.e., 2 mg/L), susceptibility to cefiderocol was lower because of the number of isolates with cefiderocol MIC values of 4 mg/L (**Table 1**), but cefiderocol, together with aztreonam-avibactam, remained one of the most active β -lactams, especially against isolates carrying metallo- β -lactamase genes (**Figure 3B**).

Boudewijn L.M. DeJonge¹, Sean T. Nguyen¹, Jason J. Bryowsky¹, Joshua M. Maher², Rodrigo E. Mendes², Chris Longshaw³, Miki Takemura⁴, and Yoshinori Yamano⁴ ¹Shionogi Inc., Florham Park, New Jersey, USA; ²Element (JMI Laboratories), North Liberty, Iowa, USA; ³Shionogi B.V., London, UK; ⁴Shionogi & Co., Ltd., Osaka, Japan

Table 1. Cefiderocol MIC distribution for carbapenemase-producing meropenem- and/or imipenem-non-susceptible Enterobacterales

	Number (%) of isolates with cefiderocol MIC of													MIC ₅₀	
Carbapenemase	0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	<u>2</u>	<u>4</u>	8	16	32	(mg/L)	
All	3 (0.6)	5 (1.1)	15 (3.2)	21 (4.4)	43 (9.1)	62 (13.1)	79 (16.7)	69 (14.6)	95 (20.0)	64 (13.5)	17 (3.6)	0 (0)	1 (0.2)	1	
КРС	2 (0.8)	2 (0.8)	9 (3.5)	11 (4.3)	28 (10.9)	47 (18.3)	51 (19.8)	37 (14.4)	45 (17.5)	21 (8.2)	3 (1.2)	0 (0)	1 (0.4)	0.5	
OXA-48-like	1 (0.9)	3 (2.6)	4 (3.4)	6 (5.2)	12 (10.3)	12 (10.3)	18 (15.5)	16 (13.8)	21 (18.1)	17 (14.7)	6 (5.2)			1	
NDM				1 (1.0)	1 (1.0)	1 (1.0)	5 (5.2)	14 (14.6)	29 (30.2)	31 (32.3)	14 (14.6)			2	
VIM			1 (3.2)	2 (6.5)	3 (9.7)	2 (6.5)	10 (32.3)	3 (9.7)	5 (16.1)	4 (12.9)	1 (3.2)			0.5	
IMP									1 (100)						
SME			1 (33.3)	1 (33.3)	0 (0)	0 (0)	1 (33.3)							0.06	
EUCAST (light pink) and CLSI (darl	< pink) susceptibility bre	akpoints are highli	ghted by underline	d letters in italics, r	espectively.										

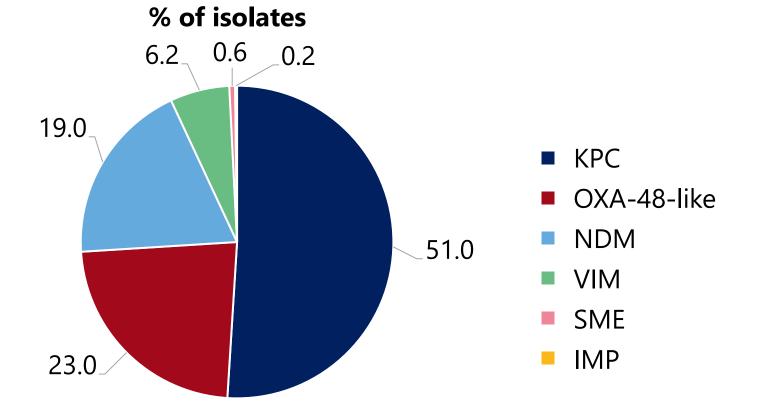
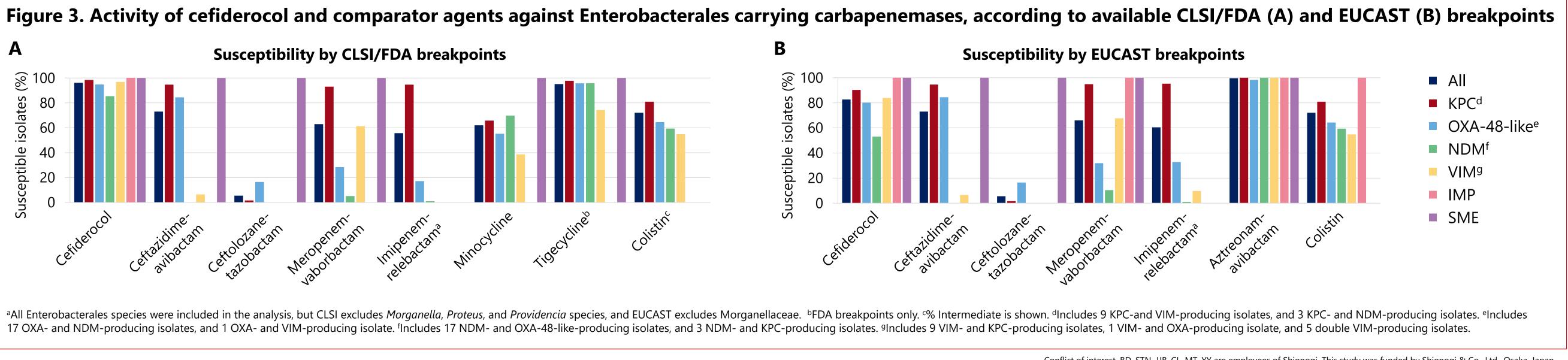

Cefiderocol Remains Highly Active Against Carbapenemase-Producing Enterobacterales

Figure 1. Distribution of meropenem- and/or imipenem-non-susceptible Enterobacterales species

- Enterobacter cloacae complex

- *Citrobacter freundii* complex

KPC, *Klebsiella pneumoniae carbapenemase*; IMP, imipenemase MBL; MBL, metallo-β-lactamase; NDM, New Delhi MBL; OXA, oxacillinase; SME, Serratia marcescens enzyme; VIM, Verona integronencoded MBL.


^aAll Enterobacterales species were included in the analysis, but CLSI excludes Morganella, Proteus, and Providencia species, and EUCAST excludes Morganellaceae. ^bFDA breakpoints only. ^c% Intermediate is shown. ^dIncludes 9 KPC- and VIM-producing isolates, and 3 KPC- and NDM-producing isolates. ^eIncludes 17 OXA- and NDM-producing isolates, and 1 OXA- and VIM-producing isolate. ¹Includes 17 NDM- and KPC-producing isolates, and 3 NDM- and KPC-producing isolates, and 3 NDM- and KPC-producing isolates, 1 VIM- and OXA-producing isolate, and 5 double VIM-producing isolates.

CONCLUSIONS

- Cefiderocol is active against Enterobacterales isolates carrying carbapenemase genes, regardless of the carbapenemase detected. In contrast, β -lactam- β -lactamase inhibitor combinations, with the exception of aztreonam-avibactam, showed variable activity.
- Cefiderocol should be considered as a treatment option when carbapenemaseproducing Enterobacterales are encountered.

